Skip to content

API documentation

This module contains all the supported server routes by ProcessProphet.

A flask server is implemented that runs on port 8080 by default. This can be changed in the .env file.

The server has been designed assuming both frontend and this server share the same file system, as the server writes output files directly to the indicated directories, instead of returning them as a response.

add_unique_start_end()

Server route: /replace_unique_start_end

Adds a unique start/end activity to the log in path_to_log.

A filtered event log is created in save_path.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
path_to_log str

Path to the log used for training. Must not be encoded.

required
save_path str

Path where the processed event log is exported.

required
case_id str

Name of the case ID column.

required
activity_key str

Name of the activity column.

required
timestamp_key str

Name of the timestamp column.

required
200 Response sideffects
  • The filtered event log is saved in save_path.
400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
@routes.route('/add_unique_start_end', methods = ["POST"])
@check_booleans_factory(["is_xes"])
@check_required_paths_factory(['path_to_log'])
@check_not_present_paths_factory(["save_path"])
def add_unique_start_end():
    """
    Server route: `/replace_unique_start_end`

    Adds a unique start/end activity to the log in `path_to_log`.

    A filtered event log is created in `save_path`.

    The POST request must have the following parameters:

    Args:
        path_to_log (str): Path to the log used for training. Must not be encoded.
        save_path (str): Path where the processed event log is exported.
        case_id (str): Name of the case ID column.
        activity_key (str): Name of the activity column.
        timestamp_key (str): Name of the timestamp column.

    200 Response sideffects: 
        - The filtered event log is saved in `save_path`.

    400 Response:
        - An object with the "error" key indicating what went wrong is sent.
    """
    if request.method == 'POST':
        request_config = request.get_json()

        #: extract params
        is_xes = request_config["is_xes"] 
        path_to_log = str(request_config['path_to_log'])
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])
        save_path= str(request_config["save_path"])

        if not is_xes: 
            sep= str(request_config["sep"])
        else: 
            sep = "" 

        preprocessor = preprocessing.Preprocessing()

        #: import log
        try: 
            preprocessor.handle_import(is_xes, path_to_log, case_id, timestamp, activity,sep=sep, formatting=False )
        except Exception as e: 
            return {
                "error":str(e),
                "description": "error while importing"
            }, 400


        success= preprocessor.add_unique_start_end_activity()
        if success:
            #: notify success
            preprocessor.event_df.to_csv(save_path, sep = ",")
            return {
                "status": "successfully created", 
                "save_path":save_path
                }, 200
        #: notify error
        return {"error": "operation not necessary, the log already has a unique start/end activity"}, 400

check_booleans_factory(params)

all parameters in the given list are checked whether they are of bool type otherwise an error response is sent. (the user should know the input is wrong)

Source code in server/server_routes.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def check_booleans_factory(params: list): 
    """
    all parameters in the given list are checked whether they are of bool type
    otherwise an error response is sent.  (the user should know the input is wrong)
    """
    def check_booleans(func): 
        @wraps(func)
        def wrapper(*args, **kwargs):
            data = request.get_json()
            for param in params:
                if not isinstance(data[param], bool):
                    print(param, "should be bool")
                    return {"error": f"a boolean param was set to another type"},400 
            return func( *args, **kwargs)
        return wrapper
    return check_booleans 

check_floats_factory(params)

all parameters in the given list are checked whether they are of float type otherwise an error response is sent. (the user should know the input is wrong)

Source code in server/server_routes.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def check_floats_factory(params: list):
    """
    all parameters in the given list are checked whether they are of float type
    otherwise an error response is sent.  (the user should know the input is wrong)
    """
    def check_floats(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            data = request.get_json()
            for param in params:
                try: 
                    i = float(data[param])
                except: 
                    print(param, "should be float")
                    return {"error": f"a float param was set to another type"},400 
            return func( *args, **kwargs)
        return wrapper
    return check_floats 

check_integers_factory(params)

all parameters in the given list are checked whether they are of integer type otherwise an error response is sent. (the user should know the input is wrong)

Source code in server/server_routes.py
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def check_integers_factory(params: list):
    """
    all parameters in the given list are checked whether they are of integer type
    otherwise an error response is sent.  (the user should know the input is wrong)
    """
    def check_integers(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            data = request.get_json()
            for param in params:
                try: 
                    i = int(data[param])
                except: 
                    print(param, "should be int")
                    return {"error": f"an integer param was set to another type"},400 
            return func( *args, **kwargs)
        return wrapper
    return check_integers 

check_not_present_paths_factory(must_not_exist)

this decorator checks in the given file paths list if each file does not exist if it does, an error is sent as response (the user should know the input is wrong)

Source code in server/server_routes.py
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def check_not_present_paths_factory(must_not_exist: list):
    """
    this decorator checks in the given file paths list if each file does not exist
    if it does, an error is sent as response (the user should know the input is wrong) 
    """
    def check_not_present_paths(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            data = request.get_json()
            for file in must_not_exist: 
                if os.path.isfile(data[file]):
                    print(data[file], "should NOT be present")
                    return {"error": "the target path for the new file already exists"},400
            return func( *args, **kwargs)
        return wrapper
    return check_not_present_paths

check_required_paths_factory(must_be_present)

this decorator checks in the given file paths list if each file does exist. very useful for checking if a log exists for example. if it does not, an error is sent as response (the user should know the input is wrong)

Source code in server/server_routes.py
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def check_required_paths_factory(must_be_present: list):
    """
    this decorator checks in the given file paths list if each file does exist. 
    very useful for checking if a log exists for example.
    if it does not, an error is sent as response  (the user should know the input is wrong)
    """
    def check_required_paths(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            data = request.get_json()
            for file in must_be_present: 
                if not os.path.isfile(data[file]):
                    print(data[file], "should be present")
                    return {"error": "one required path does not exist"},400

            return func( *args, **kwargs)
        return wrapper
    return check_required_paths 

conformance()

Server route: /conformance

Applies a conformance checking algorithm on the given petri_net_path and the log in path_to_log. Currently only token-based replay and alignment based conformance checking are supported. The conformance checking technique is selected by the conformance_technique parameter.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
is_xes bool

Whether the input log is in XES format or not (otherwise CSV).

required
case_id str

Case ID column name.

required
activity_key str

Activity column name.

required
timestamp str

Timestamp column name.

required
path_to_log str

Path to the event log.

required
petri_net_path str

Path to the Petri net used for conformance checking.

required
conformance_technique str

Either "token" or "alignment". This selects the corresponding conformance checking technique.

required
400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
@routes.route("/conformance", methods = ["POST"])
@check_required_paths_factory(['path_to_log', "petri_net_path"])
def conformance():
    """
    Server route: `/conformance`

    Applies a conformance checking algorithm on the given `petri_net_path` and the log in `path_to_log`. Currently only
    token-based replay and alignment based conformance checking are supported. The conformance checking technique is selected by the `conformance_technique` parameter.

    The POST request must have the following parameters:

    Args:
        is_xes (bool): Whether the input log is in XES format or not (otherwise CSV).
        case_id (str): Case ID column name.
        activity_key (str): Activity column name.
        timestamp (str): Timestamp column name.
        path_to_log (str): Path to the event log.
        petri_net_path (str): Path to the Petri net used for conformance checking.
        conformance_technique (str): Either `"token"` or `"alignment"`. This selects the corresponding conformance checking technique.

    400 Response:
        - An object with the "error" key indicating what went wrong is sent.

    """

    if request.method == 'POST':
        request_config = request.get_json()

        #: extract the request params
        is_xes = request_config["is_xes"]
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])

        path_to_log = str(request_config['path_to_log'])
        petri_net_path  =  str(request_config["petri_net_path"])

        conformance_technique=  str(request_config["conformance_technique"])

        preprocessor = preprocessing.Preprocessing()

        #: start by importing the log used for conf checking
        try:
            preprocessor.handle_import(is_xes, path_to_log, case_id, timestamp, activity)
        except Exception as e: 
            #: return an error and a description if something goes wrong
            return {"error": str(e)}, 400

        #: import the petri net configuration (contains the start, end markings for example)
        with open(f"{petri_net_path}.json", "r") as f: 
            pn_config = json.load(f)

        #: prepare the process model manager intance for conf. checking
        pmm = process_model_manager.ProcessModelManager(
            preprocessor.event_df, 
            None, 
            None,
            preprocessor.case_activity_key,
            preprocessor.case_id_key,
            preprocessor.case_timestamp_key
        )
        pmm.initial_marking = pn_config["initial_marking"]
        pmm.final_marking= pn_config["final_marking"]
        pmm.load_petri_net(petri_net_path)
        pmm.unencoded_df = preprocessor.unencoded_df  #: generated automatically py preprocessor

        #: run the conformance checking technique. 
        try:
            if conformance_technique == "token":
                fitness =pmm.conformance_checking_token_based_replay()
            else: 
                fitness =pmm.conformance_checking_alignments()
        except Exception as e: 
            #: return an error and a description if something goes wrong
            return {"error": str(e)}, 400

        #: return the fitness
        return {"fitness": fitness}, 200

generate_predictive_log()

Server route: /generate_predictive_log

Generates the predictive event log by cutting all traces using the given configuration and by extending these cut traces with predictions. The predictive log is exported to new_log_path. The cutting can be done in two ways: either by cutting the last cut_length events from each trace or by cutting at a random sequence index. If cutting at random indices, predictions can be made until an end marking is reached (non_stop==True) or for a fixed number of iterations (non_stop= False). If non_stop==False, or random_cuts==False, each trace is extended by cut_length predictions. A pytorch model found in path_to_model is used for making the predictions.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
is_xes bool

Whether the input log is xes or not (otherwise csv).

required
case_id str

Case id column name.

required
activity_key str

Activity column name.

required
timestamp str

Timestamp column name.

required
path_to_log str

Path to the event log used for cutting.

required
path_to_model str

Path to the RNN model used for making predictions.

required
new_log_path str

Path where the predictive log should be saved (csv format is default).

required
sep str

Column separator (used for csv input logs).

required
config str

Path to the config file for the model.

required
random_cuts bool

If set to True, each trace is cut at a random sequence index.

required
non_stop bool

If set to True, predictions are made until an end marking is reached.

required
cut_length int

In case of random cuts = non_stop = False, we cut from the tail of each trace the last cut_length events.

required
upper int

Upper bound for the number of iterations the non_stop variant should run (just for safety).

required
200 response side effects
  • The predictive log is saved in the new log path.
400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
@routes.route('/generate_predictive_log', methods = ["POST"])
@check_required_paths_factory(['path_to_log', "config", "path_to_model"])
@check_not_present_paths_factory(["new_log_path"])
@check_integers_factory(["upper", "cut_length"])
@check_booleans_factory(["non_stop","is_xes", "random_cuts"])
def generate_predictive_log():
    """
    Server route: `/generate_predictive_log`

    Generates the predictive event log by cutting all traces using the given configuration
    and by extending these cut traces with predictions. The predictive log is exported to `new_log_path`.
    The cutting can be done in two ways: either by cutting the last `cut_length` events from each trace or by cutting at a random sequence index.
    If cutting at random indices, predictions can be made until an end marking is reached (`non_stop==True`) or for a fixed number of iterations (`non_stop= False`).
    If `non_stop==False`, or `random_cuts==False`, each trace is extended by `cut_length` predictions.
    A pytorch model found in `path_to_model` is used for making the predictions.

    The POST request must have the following parameters:

    Args:
        is_xes (bool): Whether the input log is xes or not (otherwise csv). 
        case_id (str): Case id column name.
        activity_key (str): Activity column name.
        timestamp (str): Timestamp column name.
        path_to_log (str): Path to the event log used for cutting.
        path_to_model (str): Path to the RNN model used for making predictions.
        new_log_path (str): Path where the predictive log should be saved (csv format is default). 
        sep (str): Column separator (used for csv input logs).
        config (str): Path to the config file for the model.
        random_cuts (bool): If set to True, each trace is cut at a random sequence index. 
        non_stop (bool): If set to True, predictions are made until an end marking is reached. 
        cut_length (int): In case of random cuts = non_stop = False, we cut from the tail of each trace 
            the last `cut_length` events. 
        upper (int): Upper bound for the number of iterations the non_stop variant should run (just for safety).

    200 response side effects:
        - The predictive log is saved in the new log path.

    400 Response:
        - An object with the "error" key indicating what went wrong is sent.
    """
    if request.method == 'POST':
        request_config = request.get_json()

        #: get the data
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])

        path_to_log = str(request_config['path_to_log'])
        path_to_model = str(request_config["path_to_model"])
        new_log_path=  request_config["new_log_path"]

        is_xes = request_config["is_xes"]
        non_stop = bool(request_config["non_stop"])
        random_cuts =bool(request_config["random_cuts"])

        sep=  request_config.get("sep")

        cut_length = int(request_config["cut_length"])
        upper = int(request_config["upper"])

        preprocessor = preprocessing.Preprocessing()

        #: import the log for cutitng
        try: 
            preprocessor.handle_import(is_xes, path_to_log, case_id, timestamp, activity,sep=sep, formatting=True )
        except Exception as e: 
            #:  notify the error 
            return {"error": str(e)}, 400


        #: load RNN config file and model
        config = nn_manager.Config()
        with open(request_config["config"], "r") as f: 
            dic = json.load(f)
        config.load_config(dic)
        neural_manager = nn_manager.NNManagement(config)
        neural_manager.import_nn_model(path_to_model)


        #: initialize proces model manager and generate the prdictive log
        # the pmm is in charge of exporing the log.
        try:
            pmm = process_model_manager.ProcessModelManager(
                preprocessor.event_df, 
                neural_manager.model, 
                neural_manager.config,
                preprocessor.case_activity_key,
                preprocessor.case_id_key,
                preprocessor.case_timestamp_key
            )
            pmm.end_activities = preprocessor.find_end_activities()
            pmm.generate_predictive_log(non_stop=non_stop, upper =upper, random_cuts=random_cuts,cut_length=cut_length, new_log_path = new_log_path )
        except Exception as e: 
            #: notify errors
            return {"error": str(e)}, 400


        return ok, 200 

generate_predictive_process_model()

Server route: /generate_predictive_process_model

Create a predictive process model, i.e., a petri net using the predictive log in path_to_log and the given configuration. The petri net is generated using process mining algorithms such as the alpha miner, heuristic miner, inductive miner, and prefix tree miner, which can be selected using the selected_model parameter. The petri net is saved in the petri_net_path and the config file is saved in the petri_net_path.json.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
is_xes bool

Whether the input log is in XES format or not (otherwise CSV).

required
case_id str

The column name for the case ID.

required
activity_key str

The column name for the activity.

required
timestamp str

The column name for the timestamp.

required
path_to_log str

The path to the event log.

required
petri_net_path str

The path where the PNML file and the JSON file should be exported.

required
selected_model str

The selected mining model ("alpha_miner", "heuristic_miner", "inductive_miner", "prefix_tree_miner").

required
mining_algo_config dict

The settings for the selected process mining algorithm.

required
sep str

The column separator (used for CSV files).

required
config str

The path to the config file for the model.

required
200 response side effects
  • The petri net is saved in the petri_net_path.
  • The petri net config is saved in the petri_net_path.json.
400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
@routes.route('/generate_predictive_process_model', methods = ["POST"])
@check_required_paths_factory(['path_to_log', "config"])
@check_not_present_paths_factory(["petri_net_path"])
def generate_predictive_process_model():
    """
    Server route: `/generate_predictive_process_model`

    Create a predictive process model, i.e., a petri net using the predictive log in `path_to_log` and the given configuration.
    The petri net is generated using process mining algorithms such as the alpha miner, heuristic miner, inductive miner, and prefix tree miner, 
    which can be selected using the `selected_model` parameter. The petri net is saved in the `petri_net_path` and the config file is saved in the `petri_net_path.json`.


    The POST request must have the following parameters:

    Args:
        is_xes (bool): Whether the input log is in XES format or not (otherwise CSV).
        case_id (str): The column name for the case ID.
        activity_key (str): The column name for the activity.
        timestamp (str): The column name for the timestamp.
        path_to_log (str): The path to the event log.
        petri_net_path (str): The path where the PNML file and the JSON file should be exported.
        selected_model (str): The selected mining model ("alpha_miner", "heuristic_miner", "inductive_miner", "prefix_tree_miner").
        mining_algo_config (dict): The settings for the selected process mining algorithm.
        sep (str): The column separator (used for CSV files).
        config (str): The path to the config file for the model.


    200 response side effects:
        - The petri net is saved in the petri_net_path. 
        - The petri net config is saved in the petri_net_path.json.

    400 Response:
        - An object with the "error" key indicating what went wrong is sent.
    """
    if request.method == 'POST':
        #: extract the params
        request_config = request.get_json()

        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])

        path_to_log = str(request_config['path_to_log'])
        selected_mining_algo  =  str(request_config["selected_model"])
        petri_net_path  =  str(request_config["petri_net_path"])

        minig_algo_config=  request_config["mining_algo_config"]
        sep = request_config["sep"]

        #: import the predictive log  (ie with partial traces completed with predictions)
        preprocessor = preprocessing.Preprocessing()
        try:
            preprocessor.handle_import(False,path_to_log,case_id, timestamp,activity, sep= sep)
        except Exception as e:
            #: if something goes wrong...
            return {"error": str(e)}, 400



        #: load the config for the model
        config = nn_manager.Config()
        with open(request_config["config"], "r") as f: 
            dic = json.load(f)
        config.load_config(dic)


        #: initialize the process model manager intance used for petri net generation
        pmm = process_model_manager.ProcessModelManager(
            preprocessor.event_df, 
            None, 
            config,
            preprocessor.case_activity_key,
            preprocessor.case_id_key,
            preprocessor.case_timestamp_key
        )

        pmm.end_activities = preprocessor.find_end_activities()

        #: load the predictive df 
        pmm.import_predictive_df(path_to_log)

        #: runa mining algorithm. file saving is handled by each miner function 
        #: the exports is handled by each miner function, since a pmp4py call is necessary. 
        #: therefore it makes more sense to use the wrapper classses (managers) instead. 
        try:
            match selected_mining_algo: 
                case "alpha_miner":
                    pmm.alpha_miner(petri_net_path)
                case "heuristic_miner":
                    try:
                        dependency_thr = float(minig_algo_config["dependency_threshold"])
                        and_thr = float(minig_algo_config["and_threshold"])
                        loop_thr =float(minig_algo_config["loop_two_threshold"])
                    except:
                        print(e)
                        return {"error": f"a float param was set to another type"},400 
                    pmm.heuristic_miner(
                            petri_net_path, 
                            dependency_threshold= dependency_thr, 
                            and_threshold=and_thr, 
                            loop_two_threshold=loop_thr 
                    )
                case "inductive_miner":
                    try:
                        noise_thr = float(minig_algo_config["noise_threshold"])
                    except:
                        return {"error": f"a float param was set to another type"},400 
                    pmm.inductive_miner(petri_net_path,noise_thr )
                case "prefix_tree_miner":
                    pmm.prefix_tree_miner(petri_net_path)
        except Exception as e:
            print(e)
            return {"error": str(e)}, 400
            #: if something goes wrong, return the error


        #: save the initial and final markings int he json file. 
        initial = str(pmm.initial_marking)
        final  = str(pmm.final_marking)
        petri_net_config = {
            "initial_marking": initial,
            "final_marking":    final 
        }
        with open (f"{petri_net_path}.json", "w") as f:
            json.dump(petri_net_config,f)

        return ok, 200 #the 200 here is important

Server route: /grid_search

Apply grid search on the given log in path_to_log for training and testing. The best model is saved in model_path.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
path_to_log str

Path to the log used for training. Must not be encoded.

required
model_path str

Path where the model should be saved.

required
split float

Float in the range [0, 1] representing the train-test ratio.

required
case_id str

Name of the case ID column.

required
activity_key str

Name of the activity column.

required
timestamp_key str

Name of the timestamp column.

required
cuda bool

True/False indicating whether CUDA is used or not.

required
seq_len int

Length of the sliding window used.

required
lr float

Learning rate.

required
batch_size int

Batch size.

required
epochs int

Number of epochs.

required
is_xes bool

Is the log in XES format?

required
search_params dict

Dictionary of the format: { "hid_dim": [lower_bound, upper_bound, step], "mlp_dim": [lower_bound, upper_bound, step], "emb_dim": [lower_bound, upper_bound, step] }

required

Returns:

Name Type Description
dict

The response contains the following and has the following side effects: - config: The config file used for Process Prophet. - acc: The best accuracy achieved during training. - model: A base64 encoded PT file containing the model setup ready for importing.

200 response side effects
  • The config file used for Process Prophet is saved in the model path with the extension .config.json.
  • The trained model is saved in the model path.
400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
@routes.route('/grid_search', methods = ["POST"])
@check_booleans_factory(["cuda", "is_xes"])
@check_integers_factory(["seq_len","batch_size", "epochs"])
@check_floats_factory(["lr", "split"])
@check_required_paths_factory(['path_to_log'])
@check_not_present_paths_factory(["model_path"])
def grid_search():
    """
    Server route: `/grid_search`

    Apply grid search on the given log in `path_to_log` for training and testing. The best model is saved in `model_path`.

    The POST request must have the following parameters:

    Args:
        path_to_log (str): Path to the log used for training. Must not be encoded.
        model_path (str): Path where the model should be saved.
        split (float): Float in the range [0, 1] representing the train-test ratio. 
        case_id (str): Name of the case ID column.
        activity_key (str): Name of the activity column.
        timestamp_key (str): Name of the timestamp column.
        cuda (bool): True/False indicating whether CUDA is used or not. 
        seq_len (int): Length of the sliding window used. 
        lr (float): Learning rate.
        batch_size (int): Batch size. 
        epochs (int): Number of epochs.
        is_xes (bool): Is the log in XES format?
        search_params (dict): Dictionary of the format: 
            {
                "hid_dim": [lower_bound, upper_bound, step],
                "mlp_dim": [lower_bound, upper_bound, step],
                "emb_dim": [lower_bound, upper_bound, step]
            }

    Returns:
        dict: The response contains the following and has the following side effects: 
            - `config`: The config file used for Process Prophet. 
            - `acc`: The best accuracy achieved during training.
            - `model`: A base64 encoded PT file containing the model setup ready for importing.

    200 response side effects:
        - The config file used for Process Prophet is saved in the model path with the extension `.config.json`.
        - The trained model is saved in the model path. 

    400 Response:
        - An object with the "error" key indicating what went wrong is sent.
    """
    if request.method == 'POST':
        request_config = request.get_json()

        #: extract params
        is_xes = request_config["is_xes"] 
        path_to_log = str(request_config['path_to_log'])
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])
        sp = request_config["search_params"]
        split = float(request_config["split"])



        #: check the correctness of the search params
        sp_keys= sp.keys()
        if "hid_dim" not in sp_keys or "mlp_dim" not in sp_keys or "emb_dim" not in sp_keys:
            return {"error": f"missing key in search params"},400 

        for key in ["hid_dim", "mlp_dim", "emb_dim"]: #:just in case more keys are present.
            if len(sp[key])!=3: 
                    return {"error": f"search param(s) missing"},400 
            for i, val in enumerate(sp[key]): 
                try:
                    sp[key][i] = int(val)
                except: 
                    return {"error": f"non integer found in search params"},400 


        #: import training log
        preprocessor = preprocessing.Preprocessing()
        try: 
            preprocessor.handle_import(is_xes, path_to_log, case_id, timestamp, activity)
        except Exception as e: 
            return {
                "error":str(e), 
                "description": "error while importing"
            }, 400

        #: split the training log
        try:
            train, test= preprocessor.split_train_test(split)
        except exceptions.TrainPercentageTooHigh: 
            return {"error": "train percentage must be in range (0,1) and should not yield empty sublogs"}, 400
        except Exception as e: 
            return {
                "error":str(e),
                "description": "error while importing"
            }, 400

        #: initialize nn manager
        neural_manager= nn_manager.NNManagement() 
        neural_manager.config.cuda =  request_config["cuda"]
        neural_manager.config = load_config_from_preprocessor(neural_manager.config, preprocessor) 
        neural_manager.load_data(train, test, preprocessor.case_id_key, preprocessor.case_timestamp_key, preprocessor.case_activity_key)

        #: do grid search
        try:
            acc= neural_manager.grid_search(sp)
        except exceptions.NaNException as e: 
            return {
                "error": str(e)
            }
        except Exception as e: 
            return {
                "error":str(e), 
                "description": "error while training"
            }, 400


        #: export model and its config
        config = neural_manager.config.asdict()
        neural_manager.export_nn_model(request_config['model_path'])
        with open(f"{request_config['model_path'][:-3]}.config.json", "w") as f:
            json.dump(config,f)

        #: return the accuracy
        data = {
            "acc":  acc
        }
        response = make_response(jsonify(data))
        return response

multiple_prediction()

Server route: /multiple_prediction

A model is used for making multiple predictions. The predictions are saved in the prediction_file_name file. A tree like structure is generated with the predictions. The tree has a depth of depth and a branching degree of degree.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
case_id str

Case ID column name

required
activity_key str

Activity column name

required
timestamp str

Timestamp column name

required
path_to_log str

Path to the input partial trace. Must contain a single case ID and columns with the same names as the ones used in the log for training. It must be a CSV file with "," as the separator.

required
path_to_model str

Path to the RNN model used for making predictions

required
prediction_file_name str

File name for the output file that will contain the predictions

required
config str

Path to the config file for the model

required
degree int

Branching degree of the generated prediction tree

required
depth int

Depth that the predictive tree should have

required
200 response side effects
  • The predictions are saved in the prediction file in the path prediction_file_name. The generated object contains a "paths" key, which is a list of objects. Each object has a list of pairs (the sequence) and a probability.
400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
@routes.route('/multiple_prediction', methods = ["POST"])
@check_required_paths_factory(['path_to_log', "config", "path_to_model"])
@check_not_present_paths_factory(['prediction_file_name'])
@check_integers_factory(["degree", "depth"])
def multiple_prediction():
    """
    Server route: `/multiple_prediction`

    A model is used for making multiple predictions. The predictions are saved in the `prediction_file_name` file.
    A tree like structure is generated with the predictions. The tree has a depth of `depth` and a branching degree of `degree`.

    The POST request must have the following parameters:

    Args:
        case_id (str): Case ID column name
        activity_key (str): Activity column name
        timestamp (str): Timestamp column name
        path_to_log (str): Path to the input partial trace. Must contain a single case ID and columns with the same names as the ones used in the log for training. It must be a CSV file with "," as the separator.
        path_to_model (str): Path to the RNN model used for making predictions
        prediction_file_name (str): File name for the output file that will contain the predictions
        config (str): Path to the config file for the model
        degree (int): Branching degree of the generated prediction tree
        depth (int): Depth that the predictive tree should have


    200 response side effects:
        - The predictions are saved in the prediction file in the path `prediction_file_name`.
        The generated object contains a "paths" key, which is a list of objects. 
        Each object has a list of pairs (the sequence) and a probability.

    400 Response:
        - An object with the "error" key indicating what went wrong is sent.
    """

    if request.method == 'POST':
        request_config = request.get_json()
        #: extract params
        depth = int(request_config["depth"])
        degree = int(request_config["degree"])
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])
        path_to_log = str(request_config['path_to_log'])
        prediction_file_name= str(request_config['prediction_file_name'])







        #: import the RNN model and its config
        path_to_model = str(request_config["path_to_model"])
        config = nn_manager.Config()
        with open (request_config["config"], "r") as f:
            dic = json.load(f)
            dic["time_precision"] = "NS"

        config.load_config(dic)


        # ;import partial trace
        preprocessor2 = preprocessing.Preprocessing()
        try: 
            #: do this to avoid recompiting the language encoders
            preprocessor2.activity_le = config.activity_le
            preprocessor2.case_id_le= config.case_id_le
            preprocessor2.handle_import(False, path_to_log, case_id, timestamp, activity,sep=",", formatting=True)

        except Exception as e: 
            #: notify error
            return {"error": str(e)}, 400



        neural_manager = nn_manager.NNManagement(config)
        neural_manager.import_nn_model(path_to_model)


        #: create the prediction amanger instance
        pm = prediction_manager.PredictionManager(
            neural_manager.model, 
            case_id, 
            activity,
            timestamp, 
            config
        )


        #: do the predictions
        try: 
            pm.multiple_prediction_dataframe(
                depth, 
                degree, 
                preprocessor2.event_df
            )

            pm.encoded_df = preprocessor2.event_df
        except Exception as e: 
            #: notify error
            return {"error": f"{str(e)}"},400 

        #: write the obtaine predictions
        paths = pm.jsonify_paths()
        with open(prediction_file_name, 'w') as multi_predictions:
            json.dump(paths, multi_predictions, indent=2)
        return ok , 200

Server route: /random_search

Apply random search on the given log in path_to_log for training and testing. The best model is saved in model_path. The parameters are listed below.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
path_to_log str

Path to the log used for training. Must not be encoded.

required
model_path str

Path where the model should be saved.

required
split float

Float in the range [0, 1]. Represents train-test ratio.

required
case_id str

Name of the case ID column.

required
activity_key str

Name of the activity column.

required
timestamp_key str

Name of the timestamp column.

required
cuda bool

True/False if CUDA is used or not.

required
seq_len int

Length of the sliding window used.

required
lr float

Learning rate.

required
batch_size int

Batch size.

required
epochs int

Number of epochs.

required
is_xes bool

Is the log in XES format?

required
iterations int

Number of iterations for random search.

required
search_params dict

Dictionary of the format: { "hid_dim": [lower_bound (int), upper_bound (int)], "mlp_dim": [lower_bound (int), upper_bound (int)], "emb_dim": [lower_bound (int), upper_bound (int)] }

required

Returns:

Name Type Description
config dict

The config file that is used for Process Prophet.

acc float

The best accuracy achieved during training.

model str

A base64 encoded PT file containing the model setup ready for importing.

Raises:

Type Description
ValueError

If any of the input parameters are invalid.

200 response side effects
  • The config file used for Process Prophet is saved in the model path with the extension .config.json.
  • The trained model is saved in the model path.
400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
@routes.route('/random_search', methods = ["POST"])
@check_booleans_factory(["cuda", "is_xes"])
@check_integers_factory(["seq_len","batch_size", "epochs", "iterations"])
@check_floats_factory(["lr", "split"])
@check_required_paths_factory(['path_to_log'])
@check_not_present_paths_factory(["model_path"])
def random_search():
    """
    Server route: `/random_search`

    Apply random search on the given log in `path_to_log` for training and testing. 
    The best model is saved in `model_path`. The parameters are listed below.

    The POST request must have the following parameters:

    Args:
        path_to_log (str): Path to the log used for training. Must not be encoded.
        model_path (str): Path where the model should be saved.
        split (float): Float in the range [0, 1]. Represents train-test ratio. 
        case_id (str): Name of the case ID column.
        activity_key (str): Name of the activity column.
        timestamp_key (str): Name of the timestamp column.
        cuda (bool): True/False if CUDA is used or not. 
        seq_len (int): Length of the sliding window used. 
        lr (float): Learning rate.
        batch_size (int): Batch size. 
        epochs (int): Number of epochs.
        is_xes (bool): Is the log in XES format?
        iterations (int): Number of iterations for random search.
        search_params (dict): Dictionary of the format: 
            {
                "hid_dim": [lower_bound (int), upper_bound (int)],
                "mlp_dim": [lower_bound (int), upper_bound (int)],
                "emb_dim": [lower_bound (int), upper_bound (int)]
            }

    Returns:
        config (dict): The config file that is used for Process Prophet. 
        acc (float): The best accuracy achieved during training.
        model (str): A base64 encoded PT file containing the model setup ready for importing.

    Raises:
        ValueError: If any of the input parameters are invalid.

    200 response side effects:
        - The config file used for Process Prophet is saved in the model path with the extension `.config.json`.
        - The trained model is saved in the model path. 

    400 Response:
        - An object with the "error" key indicating what went wrong is sent.
    """
    if request.method == 'POST':
        request_config = request.get_json()


        #: extract params
        is_xes = request_config["is_xes"] 
        path_to_log = str(request_config['path_to_log'])
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])
        split = float(request_config["split"])
        iterations = int(request_config["iterations"])
        sp = request_config["search_params"]


        #: check the format for the search params. 
        sp_keys= sp.keys()
        if "hid_dim" not in sp_keys or "mlp_dim" not in sp_keys or "emb_dim" not in sp_keys:
            return {"error": "missing key in search params"},400 
        for key in ["hid_dim", "mlp_dim", "emb_dim"]:
            if len(sp[key])!=2: 
                    return {"error": f"search param(s) missing"},400 
            for i, val in enumerate(sp[key]): 
                try:
                    sp[key][i] = int(val)
                except: 
                    return {"error": f"non integer found in search params"},400 


        #: import the event log for training
        preprocessor = preprocessing.Preprocessing()
        try: 
            preprocessor.handle_import(is_xes, path_to_log, case_id, timestamp, activity)
        except Exception as e: 
            return {
                "error":str(e), 
                "description": "error while importing"
            }, 400


        #: split the event log for trianing
        try:
            train, test= preprocessor.split_train_test(split)
        except exceptions.TrainPercentageTooHigh: 
            return {"error": "train percentage must be in range (0,1) and should not yield empty sublogs"}, 400
        except Exception as e: 
            return {
                "error":str(e),
                "description": "error while importing"
            }, 400

        #: prepare nn manager
        neural_manager= nn_manager.NNManagement() 
        neural_manager.config.cuda =  request_config["cuda"]
        neural_manager.config = load_config_from_preprocessor(neural_manager.config, preprocessor) 
        neural_manager.load_data(train, test, preprocessor.case_id_key, preprocessor.case_timestamp_key, preprocessor.case_activity_key)

        #: do random search 
        try:
            acc= neural_manager.random_search(sp, iterations)
        except exceptions.NaNException as e: 
            return {
                "error": str(e)
            }
        except Exception as e: 
            return {
                "error":str(e),
                "description": "error while training"
            }, 400


        #: export the model and its config 
        config = neural_manager.config.asdict()
        neural_manager.export_nn_model(request_config['model_path'])
        with open(f"{request_config['model_path'][:-3]}.config.json", "w") as f:
            json.dump(config,f)
        data = {
            "acc":  acc
        }


        #: return accuracy
        response = make_response(jsonify(data))




        return response

remove_duplicates()

Server route: /remove_duplicates

Removes the duplicates from the event log in path_to_log.

This function removes the rows where the same activity happened at the same time in the same case ID. A filtered event log is created in save_path.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
path_to_log str

Path to the log used for training. Must not be encoded.

required
save_path str

Path where the processed event log is exported.

required
case_id str

Name of the case ID column.

required
activity_key str

Name of the activity column.

required
timestamp_key str

Name of the timestamp column.

required

Returns:

Name Type Description
dict

A dictionary containing the save path of the processed event log.

200 Response sideffects
  • The filtered event log is saved in save_path.
400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
@routes.route('/remove_duplicates', methods = ["POST"])
@check_booleans_factory(["is_xes"])
@check_required_paths_factory(['path_to_log'])
@check_not_present_paths_factory(["save_path"])
def remove_duplicates():
    """
    Server route: `/remove_duplicates`

    Removes the duplicates from the event log in `path_to_log`.

    This function removes the rows where the same activity happened at the same time in the same case ID.
    A filtered event log is created in `save_path`.

    The POST request must have the following parameters:

    Args:
        path_to_log (str): Path to the log used for training. Must not be encoded.
        save_path (str): Path where the processed event log is exported.
        case_id (str): Name of the case ID column.
        activity_key (str): Name of the activity column.
        timestamp_key (str): Name of the timestamp column.

    Returns:
        dict: A dictionary containing the save path of the processed event log.

    200 Response sideffects: 
        - The filtered event log is saved in `save_path`.

    400 Response:
        - An object with the "error" key indicating what went wrong is sent.
    """
    if request.method == 'POST':
        request_config = request.get_json()

        #: extract params
        is_xes = request_config["is_xes"] 

        path_to_log = str(request_config['path_to_log'])
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])
        save_path= str(request_config["save_path"])

        if not is_xes: 
            sep= str(request_config["sep"])
        else:
            sep = ""

        preprocessor = preprocessing.Preprocessing()
        #: import the log
        try: 
            preprocessor.handle_import(is_xes, path_to_log, case_id, timestamp, activity,sep=sep, formatting=False )
        except Exception as e: 
            return {
                "error":str(e),
                "description": "error while importing"
            }, 400


        success= preprocessor.remove_duplicate_rows()
        if success:
            #: notify success
            path = save_path
            preprocessor.event_df.to_csv(save_path, sep = ",")
            return {"save_path":save_path}, 200

        #: notify error
        return {"error": "removing duplicates went wrong..."},400 

replace_with_mode()

Server route: /replace_with_mode

Replaces NaN's in the activity column with the median to the event log in in path_to_log. Creates a filtered event log in save_path.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
path_to_log str

Path to the log used for training. Must not be encoded.

required
save_path str

Path where the processed event log is exported.

required
case_id str

Name of the case id column.

required
activity_key str

Name of the activity column.

required
timestamp_key str

Name of the timestamp column.

required
200 Response sideffects
  • The filtered event log is saved in save_path.
400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
@routes.route('/replace_with_mode', methods = ["POST"])
@check_booleans_factory(["is_xes"])
@check_required_paths_factory(['path_to_log'])
@check_not_present_paths_factory(["save_path"])
def replace_with_mode():
    """
    Server route: `/replace_with_mode`

    Replaces NaN's in the activity column with the median to the event log in in `path_to_log`.
    Creates a filtered event log in `save_path`.

    The POST request must have the following parameters:

    Args:
        path_to_log (str): Path to the log used for training. Must not be encoded.
        save_path (str): Path where the processed event log is exported.
        case_id (str): Name of the case id column.
        activity_key (str): Name of the activity column.
        timestamp_key (str): Name of the timestamp column.


    200 Response sideffects: 
        - The filtered event log is saved in `save_path`.


    400 Response:
        - An object with the "error" key indicating what went wrong is sent.
    """
    if request.method == 'POST':
        request_config = request.get_json()
        #: extract params
        is_xes = request_config["is_xes"] 
        path_to_log = str(request_config['path_to_log'])
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])
        save_path= str(request_config["save_path"])
        if not is_xes: 
            sep= str(request_config["sep"])
        else: 
            sep = ""


        preprocessor = preprocessing.Preprocessing()
        #: import the log
        try: 
            preprocessor.handle_import(is_xes, path_to_log, case_id, timestamp, activity,sep=sep, formatting=False )
        except Exception as e: 
            return {
                "error":str(e),
                "description": "error while importing"
            }, 400

        success= preprocessor.replace_activity_nan_with_mode()
        if success:
            #: notify success
            preprocessor.event_df.to_csv(save_path, sep = ",")
            return {
                "status": "successfully finished", 
                "save_path":save_path
                }, 200

        #: notify error
        return {"error": "nan replacement went wrong..."}, 400

single_prediction()

Server route: /single_prediction

Given a partial trace found in path_to_log, perform a single prediction.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
case_id str

Case ID column name.

required
activity_key str

Activity column name.

required
timestamp str

Timestamp column name.

required
path_to_log str

Path to the input partial trace. Must contain a single case ID and columns with the same names as the ones used in the log for training. It must be a CSV file with "," as the separator.

required
path_to_model str

Path to the RNN model used for making predictions.

required
config str

Path to the config file for the model.

required

Returns:

Name Type Description
predicted_time float

Predicted next timestamp.

predicted_event str

Predicted next activity.

probability float

Probability of the event.

400 Response
  • An object with the "error" key indicating what went wrong is sent.
Source code in server/server_routes.py
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
@routes.route('/single_prediction', methods = ["POST"])
@check_required_paths_factory(['path_to_log', "config", "path_to_model"])
def single_prediction():
    """
    Server route: `/single_prediction`

    Given a partial trace found in `path_to_log`, perform a single prediction.

    The POST request must have the following parameters:

    Args:
        case_id (str): Case ID column name.
        activity_key (str): Activity column name.
        timestamp (str): Timestamp column name.
        path_to_log (str): Path to the input partial trace. Must contain a single case ID and columns 
                           with the same names as the ones used in the log for training. 
                           It must be a CSV file with "," as the separator.
        path_to_model (str): Path to the RNN model used for making predictions.
        config (str): Path to the config file for the model.

    Returns:
        predicted_time (float): Predicted next timestamp.
        predicted_event (str): Predicted next activity.
        probability (float): Probability of the event.


    400 Response:
        - An object with the "error" key indicating what went wrong is sent.
    """
    if request.method == 'POST':
        request_config = request.get_json()
        #: extract params
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])
        path_to_log = str(request_config['path_to_log'])



        #: load the RNN model and config (language encoders, params, ...)
        path_to_model = str(request_config["path_to_model"])
        config = nn_manager.Config()
        with open (request_config["config"], "r") as f:
            dic = json.load(f)
            dic["time_precision"] = "NS"
        config.load_config(dic)


        #: import partial trace
        preprocessor = preprocessing.Preprocessing()
        try: 
            #: do this to avoid recomputing the language encoders
            preprocessor.activity_le = config.activity_le
            preprocessor.case_id_le= config.case_id_le
            preprocessor.handle_import(False, path_to_log, case_id, timestamp, activity,sep=",", formatting=True)

        except Exception as e: 
            #: notify error
            return {"error": str(e)}, 400




        neural_manager = nn_manager.NNManagement(config)
        neural_manager.import_nn_model(path_to_model)

        #: create the prediction amanger intance 
        pm = prediction_manager.PredictionManager(
            neural_manager.model, 
            case_id, 
            activity,
            timestamp, 
            config
        )

        #: do the prediction
        try:
            time, event, prob = pm.single_prediction_dataframe(
                preprocessor.event_df
            )
        except Exception as e: 
            #: notify error
            return {"error": f"{str(e)}"},400 

        #: return the prediction
        return pm.jsonify_single(time, event, prob)

train_nn()

Server route: /train_nn

Trains the RMTPP neural network using the log in path_to_log for training and testing. A model is generated in model_path and the config file is saved in model_path with the extension .config.json. All trainig params are listed below.

The POST request must have the following parameters:

Parameters:

Name Type Description Default
path_to_log str

Path to the log used for training. Must not be encoded.

required
model_path str

Path where the model should be saved.

required
split float

Float in the range [0,1] representing the train-test ratio.

required
case_id str

Name of the case id column.

required
activity_key str

Name of the activity column.

required
timestamp_key str

Name of the timestamp column.

required
cuda bool

True/False indicating whether CUDA is used or not.

required
seq_len int

Length of the sliding window used. Also affects tensor dimension.

required
lr float

Learning rate.

required
batch_size int

Batch size.

required
epochs int

Number of epochs.

required
is_xes bool

Is the log in XES format?

required
emb_dim int

Embedding dimension.

required
hid_dim int

Hidden layer dimension.

required
mlp_dim int

MLP dimension.

required
200 response side effects
  • The config file used for Process Prophet is saved in the model path with the extension .config.json.
  • The trained model is saved in the model path.
400 Response
  • An object with the "error" key indicating what went wrong is sent.

Returns:

Name Type Description
acc

The training accuracy achieved.

Source code in server/server_routes.py
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
@routes.route('/train_nn', methods = ["POST"])
@check_booleans_factory(["cuda", "is_xes"])
@check_integers_factory(["seq_len", "emb_dim", "hid_dim", "mlp_dim", "batch_size", "epochs"])
@check_floats_factory(["lr", "split"])
@check_required_paths_factory(['path_to_log'])
@check_not_present_paths_factory(["model_path"])
def train_nn():
    """
    Server route: `/train_nn`

    Trains the RMTPP neural network using the log in `path_to_log` for training and testing. 
    A model is generated in `model_path` and the config file is saved in `model_path` with the extension `.config.json`.
    All trainig params are listed below. 

    The POST request must have the following parameters:

    Args:
        path_to_log (str): Path to the log used for training. Must not be encoded.
        model_path (str): Path where the model should be saved.
        split (float): Float in the range [0,1] representing the train-test ratio.
        case_id (str): Name of the case id column.
        activity_key (str): Name of the activity column.
        timestamp_key (str): Name of the timestamp column.
        cuda (bool): True/False indicating whether CUDA is used or not.
        seq_len (int): Length of the sliding window used. Also affects tensor dimension.
        lr (float): Learning rate.
        batch_size (int): Batch size.
        epochs (int): Number of epochs.
        is_xes (bool): Is the log in XES format?
        emb_dim (int): Embedding dimension.
        hid_dim (int): Hidden layer dimension.
        mlp_dim (int): MLP dimension.

    200 response side effects:
        - The config file used for Process Prophet is saved in the model path with the extension `.config.json`.
        - The trained model is saved in the model path. 

    400 Response:
        - An object with the "error" key indicating what went wrong is sent.

    Returns:
        acc: The training accuracy achieved.
    """
    if request.method == 'POST':

        #: extract params
        request_config = request.get_json()
        path_to_log = str(request_config['path_to_log'])
        case_id= str(request_config["case_id"])
        activity= str(request_config["activity_key"])
        timestamp= str(request_config["timestamp_key"])


        preprocessor = preprocessing.Preprocessing()


        #: import the log for training
        try: 
            preprocessor.handle_import(request_config['is_xes'], path_to_log, case_id, timestamp, activity)
        except Exception as e: 
            return {
                "error":str(e), 
                "description": "error while importing"
            }, 400

        #: split the log for training
        try:
            train, test= preprocessor.split_train_test(float(request_config["split"]))
        except exceptions.TrainPercentageTooHigh: 
            return {"error": "train percentage must be in range (0,1) and should not yield empty sublogs"}, 400
        except Exception as e: 
            return {
                "error":str(e),
                "description": "error while importing"
            }, 400


        #: initialize the manager
        neural_manager= nn_manager.NNManagement() 
        neural_manager.config = load_config_from_params(neural_manager.config, request_config)
        neural_manager.config = load_config_from_preprocessor(neural_manager.config, preprocessor) 
        neural_manager.load_data(train, test, case_id, timestamp, activity)

        #: train the RNN
        try:
            neural_manager.train()
        except exceptions.NaNException as e: 
            return {
                "error": str(e)
            }
        except Exception as e: 
            return {
                "error":str(e),
                "description": "error while training"
            }, 400


        #: jsonify trianing stats for response
        training_stats = neural_manager.get_training_statistics()
        data = {
            "training_statistics": training_stats, 
        }


        #: export model and its config
        config = neural_manager.config.asdict()
        neural_manager.export_nn_model(request_config['model_path'])
        with open(f"{request_config['model_path'][:-3]}.config.json", "w") as f:
            json.dump(config,f)

        #: respond with train stats
        response = make_response(jsonify(data))

        return response